deepseek视觉模型调用
2025.03.13
jinance
学习
 热度
℃
通过前端上传图片以及描述,提交数据给后端,然后调用deepseek视觉模型分析数据并返回给前端。
前端代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
| <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>图片上传与分析</title> <style> body { font-family: Arial, sans-serif; margin: 20px; } input, button { margin: 10px 0; padding: 8px; width: 300px; } button { cursor: pointer; } #result { margin-top: 20px; padding: 10px; background-color: #f9f9f9; border: 1px solid #ddd; } </style> </head> <body> <h1>图片上传与分析</h1> <div> <label for="imageFile">请选择图片文件:</label> <input type="file" id="imageFile" accept="image/*" /> </div> <div> <label for="text">请输入描述文本:</label> <input type="text" id="text" placeholder="请输入描述文本" /> </div> <button onclick="uploadImage()" id="submitBtn">提交</button>
<div id="result"></div>
<script> async function uploadImage() { const imageFile = document.getElementById('imageFile').files[0]; const text = document.getElementById('text').value; const submitBtn = document.getElementById('submitBtn'); const resultDiv = document.getElementById('result');
if (!imageFile || !text) { alert('请选择图片文件并输入描述文本'); return; }
submitBtn.disabled = true; submitBtn.innerText = '提交中...';
const formData = new FormData(); formData.append('image', imageFile); formData.append('text', text);
try { const response = await fetch('/api/process-image', { method: 'POST', body: formData, });
if (response.ok) { const result = await response.json(); resultDiv.innerHTML = `<h3>返回结果:</h3><pre>${JSON.stringify(result, null, 2)}</pre>`; } else { resultDiv.innerHTML = '服务器错误,请稍后重试。'; } } catch (error) { resultDiv.innerHTML = '请求失败,请检查网络或稍后重试。'; } finally { submitBtn.disabled = false; submitBtn.innerText = '提交'; } } </script> </body> </html>
|
后端代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
| from flask import Flask, render_template, request, jsonify import requests import os from werkzeug.utils import secure_filename import logging import base64
app = Flask(__name__)
logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__)
UPLOAD_FOLDER = 'uploads' if not os.path.exists(UPLOAD_FOLDER): os.makedirs(UPLOAD_FOLDER)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
@app.route('/') def index(): return render_template('deepseek.html')
@app.route('/api/process-image', methods=['POST']) def process_image(): try: if 'image' not in request.files or 'text' not in request.form: return jsonify({"error": "缺少图片文件或描述文本"}), 400
image_file = request.files['image'] text = request.form['text']
if image_file.filename == '': return jsonify({"error": "未选择图片文件"}), 400
filename = secure_filename(image_file.filename) image_path = os.path.join(app.config['UPLOAD_FOLDER'], filename) image_file.save(image_path)
api_url = "https://api.siliconflow.cn/v1/chat/completions" headers = { "Authorization": "Bearer sk-xxxxxxxxxxxxxxxxxx", "Content-Type": "application/json" }
with open(image_path, "rb") as image_file: image_base64 = base64.b64encode(image_file.read()).decode('utf-8')
payload = { "model": "deepseek-ai/deepseek-vl2", "frequency_penalty": 0, "temperature": 0.2, "messages": [ { "role": "user", "content": [ { "image_url": { "url": f"data:image/jpeg;base64,{image_base64}", "detail": "auto" }, "type": "image_url" }, { "text": text, "type": "text" } ] } ] }
response = requests.post(api_url, json=payload, headers=headers)
os.remove(image_path)
if response.status_code == 200: return jsonify(response.json()) else: logger.error(f"外部 API 请求失败,状态码: {response.status_code}") return jsonify({"error": "外部 API 请求失败"}), response.status_code
except Exception as e: logger.error(f"发生错误: {str(e)}") return jsonify({"error": str(e)}), 500
if __name__ == '__main__': app.run(debug=True)
|